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Abstract 
 
Score following is a process in which the score location is automatically tracked in real-time in a 
live performance. It can either be MIDI-based or audio-based according to the type of its input. 
Two challenges exist in an audio-based score-following system. One is related to pitch tracking, 
as the system needs a fast and accurate pitch tracker. However, it is hard for a polyphonic pitch 
tracker to satisfy both conditions without prior information about instruments. Since the accuracy 
of a pitch tracker is not guaranteed, the design of matching criteria in score following becomes 
another interesting challenge.  
 
There exist some standard pitch detection algorithms such as the harmonic product spectrum (HPS) 
and harmonic sieve (HS) algorithms which are fast but only provide partial pitch information. In 
this thesis, the HPS algorithm is taken as an example, and several matching criteria for pitch 
tracking are designed that based on the nature of detection errors that the HPS algorithm makes. 

To test the nature of detection errors of the HPS algorithm, pilot experiments are performed. It is 
found that octave errors frequently occur and the predominant detected pitch has a significant 
relationship with the top note.  Detection accuracy is discussed for detected pitch with different 
significance in a time frame. Using this information from pilot experiments, several matching 
criteria are designed. The first method developed is called the linear combination (LC) method. 
This method takes octave errors and the property of predominant detected pitch into consideration 
in a linear combination way. Since the LC method is ad hoc and it is not guaranteed that the linear 
combination is the best way to evaluate matching ratings, we designed several probability-based 
method called Probabilistic Linear Combination (PLC), Absolute Probabilistic Model of Pitch 
Errors (APPE), and Relative Probabilistic Model of Pitch Errors (RPPE).      

This thesis provides a comparative evaluation of these four different methods and the baseline 
method which doesn’t consider the properties of pitch detection errors. It is found that taking the 
properties into consideration does improve the performance considerably when compared to 
baseline processing that ignores pitch, and the APPE method achieves the best performance. It is 
also found that the RPPE method doesn't perform as well as the APPE method. This suggests that 
the distributions of differences between the hypothesized pitch value and the true pitch value are 
sensitive to the true pitch value. 
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1 Introduction 

Score following is a process in which the score position is tracked in real-time in a live 
performance. A score-following system may either be MIDI-based or audio-based according to 
the type of its input. In this thesis, we focus on matching criteria design for an audio-based 
polyphonic score-following system using the Harmonic Product Spectrum. This section provides 
the background, motivation, objectives and structure of this thesis. 

 

1.1  Background 

There are two steps in a common audio-based score-following system, which matches a sequence 
of notes that are performed to their locations in the score.  The first step is to detect the pitch and 
the second step is to find out the position.  These steps are referred to as pitch detection and score 
following, respectively.  Obtaining an accurate pitch quickly has been widely researched for the 
monophonic case (e.g. [1,4,5]).  However, for the polyphonic case, the development of a method 
that achieves both accuracy and speed remains an open research question, which makes it difficult 
to develop a good real-time score-following system. 

Some researchers deal with non-real-time polyphonic score-following systems, focusing on 
detection accuracy at the expense of speed [2]. Some other researchers skip the pitch-estimation 
step by comparing score information to the raw spectra in musical audio to reduce risks that would 
be caused by errors in explicit pitch estimation [7]. Other researchers perform preprocessing based 
on a priori information about the instruments, to maintain accuracy and speed, trading off the 
diversity of instruments [3]. There are also some fast standard pitch-detection algorithms which 
do not require preprocessing, providing only partial pitch information, but most of these have 
historically not been popular for use in score-following systems (e.g. [4][5]). 
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1.2  Motivation 

Standard pitch-detection algorithms such as harmonic product spectrum and harmonic sieve are 
very fast which is good for score followers to accomplish real-time following. But unsatisfying 
detection accuracy impedes their usage in score-following systems. One possible way to reduce 
the influence caused by detection errors on the performance of the score-following system is in 
the design of a proper matching criterion that can tolerate some kinds of errors made by the detector. 

Due to limitations of accuracy on the part of existing pitch detectors, two things need to be 
considered when designing matching criteria in a score-following system: human performance 
error and pitch-detection error. A good matcher should be able to tolerate both types of errors.   
Bloch & Dannenberg [6] designed a matching function which considers only performance error 
since their system is MIDI-based, thereby incurring no pitch detection error.  However, in an audio-
based system, assuming only performance error is insufficient because different pitch detectors 
provide different degrees of accuracy. Hence, several questions should be considered before 
designing a match rule: 

1. Given a pitch detector, what is its accuracy?  
2. What kinds of errors does it make?  
3. Is there any pitch information that it provides more robustly? 

Different pitch detectors may have different answers to these questions. These answers are 
valuable information which can be used in the design of the matching criterion of a score follower. 
The score follower matches instantly detected pitch information with the score, and finds the best 
match position for it. If we can use the properties of the pitch detector to design matching criteria, 
we can improve the matching accuracy of the score follower. With this motivation, in this study 
we take the Harmonic Product Spectrum (HPS) algorithm as an example, design the matching 
criteria inside the score follower based on the properties exhibited by HPS in estimating pitch for 
polyphonic music, and discuss the extent to which these matching criteria provide better 
performance compared to matching criteria that do not consider the recognition accuracy of the 
polyphonic HPS pitch tracker. 
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1.3 Organization 

This thesis is organized into 6 sections. Section 1 and Section 2 review the background, motivation, 
and other work that is related to the work in this thesis. Section 3 discusses the results of pilot 
experiments that evaluate the standard pitch detectors known as the harmonic product spectrum 
and harmonic sieve. These results provide insight into the design of better matching criteria for 
score-following systems. Section 4 describes the motivations and details of selected matching 
criteria. In Section 5, the dataset, evaluation methods, and results are provided. In the last section, 
conclusions are provided with a detailed summary of results and discussions about future work. 

 

2 Related work 

Bloch & Dannenberg [6] designed a real-time accompaniment of keyboard performance and 
designed a set of algorithms to match the polyphonic performance against the stored score.  They 
use a rating function which is the number of performed events in the score minus the number of 
performed events not in the score, divided by the number performed events, using 0.5 as the 
threshold value.  This function worked reasonably well for MIDI-based score-following systems 
since it gave proper tolerance with respect to performance error, but it does not always work 
acceptably in an audio-based system because the detection of incorrect pitches leads to loss of 
accuracy due to false-negative errors.  

Cont [3] presented a method for real-time alignment of audio to score for polyphonic music signals. 
His method uses non-negative matrix factorization (NMF) for multi-pitch observation and 
hierarchical hidden Markov models for sequential modeling. In his system, audio input is 
represented as a feature vector for each real-time frame which is used to compute the observation 
likelihood of being at an event in the score. This system is not able to deal with arbitrary pitch-
instrument combinations because tuning issues would make it difficult to create a basis set given 
that spectral templates for all pitches of a given instrument need to be learned beforehand. Cont’s 
matching criterion is also not suitable for a standard pitch detector that does not have a priori 
knowledge and high accuracy.  
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Duan and Pardo [8] proposed an online audio-score alignment approach for multi-instrument 
polyphonic music which uses a 2-dimensional state vector to model the underlying score position 
and tempo of each time frame of audio performance. The observation model in this approach 
presents the likelihood of observing an audio frame given a state, based on either multi-pitch 
information or chroma. In the chroma-based model, the cosine angle distance is employed to judge 
how similar the audio chroma features and score chroma features are. This method can make the 
observation likelihood insensitive to loudness, but it is not able to make good use of information 
provided by the pitch detector. Also, more experiments are needed to evaluate the feasibility of 
applying this system in real-time.   

There are many standard pitch-detection algorithms that are simple and fast, which are desirable 
attributes when designing a score-following system. Noll [4] proposed the harmonic product 
spectrum method, in which the fundamental frequency is calculated by measuring the frequencies 
of higher harmonic components and computing the greatest common divisor.  Duifhuis et al. [5] 
introduced the harmonic sieve to determine whether components are rejected or accepted at a 
candidate pitch. These detectors are fast but not very accurate. When they are used in a score-
following system, the use of a good matching criterion would be critical to getting a good result. 

3 Pilot experiments in pitch tracking 

This section includes details about pilot experiments using the standard pitch detection algorithms 
Harmonic Product Spectrum (HPS) algorithm and the Harmonic Sieve (HS) method.  We describe 
the dataset used and some experiment results.  These pilot experiments were designed to test the 
accuracy and the nature of errors that the standard pitch detectors made.  

 

3.1 Standard Pitch Detection Algorithms 

 
3.1.1 Harmonic Product Spectrum Algorithm 

One way to find the fundamental frequency (corresponding to the pitch value) is to compute the 
greatest common divisor of all harmonic components. In the harmonic product spectrum algorithm, 
the greatest common divisor is computed by summing up a set of down-sampled spectra.  
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Figure 1. Implementation of the harmonic product spectrum (HPS) [15] 

In our implementation, the audio input is a time frame with the length of 96 ms. A Hamming 
window with the same length as the time frame is applied to the time frame. The spectrum is 
obtained by performing an FFT on the windowed time frame. With that, the spectrum is down-
sampled by ratios from 2 to 8. By summing all down-sampled spectra together, we obtain the right-
most plot in Figure 1. For monophonic pitch detection, the position corresponds to the highest peak 
is the fundamental frequency of the estimated pitch. In our case, since each time frame contains 4 
notes, the corresponding frequencies of the highest four peaks are regarded as estimated 
fundamental frequencies. The output pitch values are ranked in a descending way according to the 
height of their corresponding peaks. 

 

3.1.2 Harmonic Sieve Method 

The Harmonic Sieve procedure is introduced in Duifhuis et al.[5]. A sieve is used to differentiate 
genuine harmonics from others frequency components. Only genuine harmonics can pass through 
the sieve. The harmonic sieve is a one-dimensional sieve in the frequency domain which has 
meshes of a bandwidth around the harmonic frequencies.  

In our implementation, a sieve is a one-dimensional log-scale vector in the frequency domain. In 
the vector, the elements with non-zero values indicate the position of meshes. By performing a 
cross-correlation between the sieve and the log-frequency scale spectrum of the signal, the 
similarity between the frequency response of the signal and a shifted version of the sieve is 
obtained. The position of the highest peak in the result of cross-correlation corresponds to the 
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frequency for which the shifted sieve most resembles the incoming frequency response. As in the 
case of the HPS algorithm, the corresponding frequencies of the highest four peaks are regarded 
as estimated fundamental frequencies which can be converted to pitch values in the MIDI scale.  

 

3.2 The Bach 10 dataset 

The Bach 10 dataset was used for the pilot experiments testing the HPS and harmonic sieve 
algorithms. It consists of excerpts from ten four-part J.S. Bach chorales [12]. Each piece is 
performed by four instruments including violin, clarinet, tenor saxophone, and bassoon. Each 
musician’s part was recorded in isolation. Ensemble audios were then generated by mixing the 
individual lines. MIDI scores, the ground-truth alignment between the audio and the score, the 
ground-truth pitch values of each part, and the ground-truth notes of each piece are provided.  

Pilot experiments are performed on 10 ensemble audios. Each ensemble audio is separated into 
96-ms time frames with 30-ms overlap. Pitch values of each time frame are estimated by the HPS 
algorithm. In the meantime, the ground truth pitch values for each time frame are provided by the 
GTF0_*.mat file from Bach 10 dataset. Both the estimated pitch values and the ground-truth pitch 
values are used to test the accuracy of HPS. 

 

3.3 The overall accuracy of standard pitch detectors 

Prior to considering the design of potential matching criteria, we performed experiments using 
Bach 10 dataset to evaluate the accuracy of the standard harmonic product spectrum and harmonic 
sieve pitch detection algorithms. To evaluate the overall accuracy of the two pitch detection 
algorithms above, we used the ensemble audios of ten four-part J.S. Bach chorales as the input of 
pitch detector and compare the output of each pitch detector to the ground-truth pitch values frame 
by frame. (Each audio is separated into time frames as mentioned in Sec. 3.1) 

In each time frame, four notes are performed in all. Estimated pitch values in each time frame are 
compared with the corresponding ground-truth pitch values in the same time frame. The number 
of pitch values in common between estimated and ground-truth pitch values for each time frame 
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is then used to form Figure 1 which reflect the accuracy of HPS algorithm and harmonic sieve 
method. For example, the percentage labeled “≥1 pitch is correctly detected” is calculated by 
dividing the number of time frames within which at least 1 note is correctly detected by the total 
number of frames. Considering the result of the HPS algorithm for example, in Figure 2, the 
percentage that no notes are correctly detected is 2%. The percentage that more than 1 notes are 
correctly detected is 98%. The percentage that more than 2, 3 notes are correctly detected are 84%, 
39% respectively. The percentage that all notes are correctly detected is only 4%.  

 

Figure 2. Comparison of detector accuracies 

Figure 2 shows that both algorithms make many detection errors and provide only partial pitch 
information. Compared to the harmonic sieve algorithm, the harmonic product spectrum has better 
performance. Because of this, we make use of the harmonic product spectrum in our further 
experiments.  

 

3.4 Properties of errors that HPS algorithm make 

Some literature (e.g. [9]) indicates that octave error is a common problem in pitch measurement 
using the harmonic product spectrum. In Section 3.1, it is mentioned that estimated pitch values 
are ranked in decreasing order according to the height of their corresponding peaks. This means 
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that the first detected pitch value corresponds to the highest peak. The second detected pitch value 
corresponds to the second highest peak, etc. Commonly, the height of the peak somehow indicates 
how significant the pitch is in the time frame.  We performed several experiments to find the 
accuracy of the first detected pitch, the second detected pitch, etc. We will pay especial attention 
to how many errors they make, and how often octave errors happen, respectively. 

The first detected pitch corresponds to the highest peak, which is the most significant component. 
As shown in figure 3, the accuracy in the first detected pitch is 86%, octave error takes 4%, and 
other errors takes 10%.  

 

Figure 3. Accuracy chart for the first detected pitch 

The second detected pitch corresponds to the second highest peak. Figure 4 shows the accuracy 
and the percentage of octave errors. The accuracy is 48%. The percentage of octave error is 40%. 
The percentage of other errors is 12%. This result shows that accuracy drops a lot from the first 
detected pitch to the second detected pitch. And octave error is an important fact of the decreasing 
accuracy. 

Accuracy of first detected pitch

Accurate Octave error Other errors
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Figure 4. Accuracy chart for the second detected pitch 

Figure 5 shows the accuracy of the third detected pitch. 36% of pitches are estimated correctly. 
36% of them have octave errors. Comparing Figures 3, 4, it is clear that the accuracy keeps 
decreasing and octave error happens more frequently.  

 

Figure 5. Accuracy chart for the third detected pitch 

The fourth detected pitch corresponds to the fourth highest peak. It has the lowest accuracy, only 
24%. The percentage that octave errors happen is 37%. Other types of errors occur 39% of the 
time. 

Accuracy of second detected pitch

Accurate Octave error Other errors

Accuracy of third detected pitch

Accurate Octave error Other errors
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Figure 6. Accuracy chart for the fourth detected pitch 

From these results, we observed that the first detected pitch is the most reliable one and octave 
errors do happen frequently, especially in the second, third, and fourth detected pitches. For those 
estimated pitches which contains octave errors, they still contain partial useful information which 
is chroma (pitch class) information. But if the error type is other errors, it’s hard to gain partial 
information from the detection results.  

In our experiments, we also found sometimes the detected pitch may have an error of  ±1 MIDI 

notes (i.e. ±1 half steps). In approximately 36% of the segments, at least one detected note has an 

error of  ±1 MIDI notes.  

 

3.5 Other useful observations about the HPS algorithm 

 

One other observation is that the first detected pitch is closely related to the top note in score events. 
We compared the first detected the pitch of each time frame with the ground-truth top note of the 
time frame.  As a result, in 71% of frames, the first detected pitch indeed correspond to the top 
ground-truth note. This indicates a significant relation between the first detected pitch and the 
ground-truth top pitch value.  

 

Accuracy of last detected pitch

Accurate Octave error Other errors
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3.6 Summary 

 

We summarize the results of our pilot experiments as follows: 

1. The first detected pitch should be paid more attention to compared to the other detected pitches, 
not only because of its high accuracy, but also because of the significant relationship with the 
ground-truth top note. For a polyphonic score-matching task, one reliably-detected pitch is not 
really helpful to find the correct match among a bunch of candidates. But if this reliable detection 
has a strong potential to be the top note, it could narrow the range of choices of candidates much.  

2. The detection results contain more information than they may appear. Even though the second, 
third, and fourth detected pitches have low accuracy, the percentage of octave errors in the results 
are all more than 35%. Considering the percentage of accurate detection, even for the fourth 
detected pitch, there is at least a 60% chance that it contains at least some useful information. A 
proper utilization of partial information would be helpful in score matching. A combination of 
chroma information from detection results could be helpful in finding the correct match among 
candidates if candidates have a different combination of chromas. 

 

 

4 Design of Matching Criteria 

In order to get a sense of how well a standard pitch detector can work with a general score-
following system, we conducted an experiment which takes pitch detection results as the input of 
a polyphonic score-following system which works well with MIDI input but that does not take 
into account the pitch-detection errors that might occur. The score follower we employed in this 
experiment is a component of Huang’s accompaniment system [13], which produces good 
performance with MIDI input. The matching function in Huang’s score follower is designed to 
tolerate some possible performance errors.  

Rating = (# of performed events in compound score events – # of performed events not in 
compound score events) / # of performed events 
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If the rating is greater than or equal to 0.5, two sets of compound events match; otherwise they 
don’t match. For example, given a compound performance events (C, E, G, A) and a compound 
score events (C, D, E, G): 

# of performed events in compound score events = 3; # of performed events not in compound score 
events = 1; # of performed events = 4; rating = (3 -1)/4 = 0.5, so we think these two compound 
events match.   

In this experiments, HPS is employed as the pitch detector, and all ten pieces of music in the Bach 
10 dataset [12] are tested. But using pitch detection results as the input to the score follower 
resulted in a near-complete failure of the score-following system. The matching function in 
Huang’s score follower was not able to tolerate detection errors made by the standard pitch detector. 
One main reason is that the detection errors a standard pitch detector makes always result in getting 
a rating lower than 0.5. Using the HPS algorithm, with the accuracy information provided in 
Section 3.3, only 39% of correct matches can get a rating greater or equal to 0.5 which makes it 
impossible for the score follower to obtain good results. Although a lower threshold would allow 
more correct matches to be found, it will also increase the rate of incorrect matches. Hence simply 
decreasing the threshold is not helpful. 

Realizing that the matching function does not work well with standard pitch detection algorithms 
such as HPS without consideration the nature of pitch-detection errors, we designed several 
matching functions that utilize the pitch detector’s properties discussed in Section 3, referred to as 
Linear Combination (LC), Probabilistic Linear Combination (PLC),  Absolute Probabilistic Model 
of Pitch Errors (APPE), and Relative Probabilistic Model of Pitch Errors (RPPE), respectively.  
The motivations and details of each of these designed matching functions are discussed in the 
subsections that follow. 

4.1 The Linear Combination Method (LC) 

The linear combination method is an ad hoc method. The main objective of this method is to reduce 
the effect of octave errors and enhance the influence of accurate detection. In this method, we 
mainly designed a distance function showing relatively how different compound score events and 
compound performance events are. (A compound score event contains score events with multiple 
notes performed simultaneously; a compound performance event contains events that happen in 
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the same time frame during the performance.) For the purpose of enabling the matching criterion 
to be compatible with the Huang score follower, we convert the distance function into a rating 
function which ranges from 0 to 1.  

The rating function we designed is as follows.   

rating = 	
1

1 + S ∙ distance 

where distance represents the distance between a compound performance event and a compound 

score event. The smaller the distance is, the larger the rating is which indicates that two events are 
more similar. 

The constant S is a weight parameter that is used to adjust the variation of rating. This optimal 
value of S was found to be 8.82 in our initial experiments. 

Suppose there are M notes in a compound score event and N notes in a compound performance 
event. For each note in the compound performance event, we want to find the corresponding note 
in the compound score event and calculate its distance to the various score events. We define the 

distance for the i12 detected note in the current performance event as distance3. We define the total 

distance as the summation of the distance for every detected note in the current performance event:  

distance =4w3 ∙ distance3
6

378

 

where w3 is a weight parameter which is assigned according to the likelihood of the first, second, 

third, or fourth detected note for being detected correctly. Greater weight is given to the detected 
note that is more likely to be correct. For each type of detected note, the weight is estimated based 
on the percentage of the audio frames with accurate pitch estimation. 

If we only think of accurate pitch estimation as an estimate in which the detected pitch value must 
be exactly the same as the true pitch value, some useful information would be missed.  As we have 
noted, many estimates contain octave errors. Since an estimate with octave errors could provide at 
least correct chroma information, we think of such an estimate (i.e. correct chroma but incorrect 
octave) as providing “half-useful” information or a “half-accurate” estimate.  
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We defined the likelihood of each type of detected note for being correctly detected as the 
summation of the percentage of accurate pitch estimates and half the percentage of half-accurate 
pitch estimation which can be written as, 

𝑤: = 𝑝<=>?@AB	>??CD>@< +
1
2 ∙ 𝑝F>AG	>??CD>@< 

From the results of our pilot experiments in Section 3.4, for the first detected note, 

𝑝<=>?@AB	>??CD>@< = 0.86, 𝑝F>AG	>??CD>@< = 0.04, producing 𝑤8 = 0.86 + 8
M
∙ 0.04 = 0.88. For the 

second detected note, 𝑝<=>?@AB	>??CD>@< = 0.48, 𝑝F>AG	>??CD>@< = 0.40, so we get 𝑤M = 0.48 + 8
M
∙

0.40 = 0.68. For the third detected note, 𝑝<=>?@AB	>??CD>@< = 0.36, 𝑝F>AG	>??CD>@< = 0.36, so we 

get 𝑤O = 0.36 + 8
M
∙ 0.36 = 0.54 . For the fourth detected note, 𝑝<=>?@AB	>??CD>@< = 0.24 , 

𝑝F>AG	>??CD>@< = 0.37, so we get 𝑤R = 0.24 + 8
M
∙ 0.37 = 0.42. After normalization so that the 

weights sum to 1.0, we obtain 𝑤8 = 0.35, 𝑤M = 0.27, 𝑤O = 0.21, 𝑤R = 0.17. 

The formula for calculating distance3 is 

distance3 = min
T
distance(i, j) 				j	from	1	to	M 

Let 𝐧𝐬  represent the compound score event, 𝐧𝐩  represents the current compound performance 

event. Both of these are vectors containing several notes according to the MIDI note scale. In 

addition, let n_`	represent the i12 detected note in the current compound performance event, where 

i ranges from 1 to N,  and let N represent the number of notes in the current compound performance 

event. We will use the term	nab to represent the j12 note in a compound score event, where j ranges 

from 1 to M, with M being the total number of notes in the compound score event.  With these 

conventions, the	distance(i, j) is a function that represents the distance between the i12 detected 

note n_` in the current compound performance event and the j12 note nab in the compound score 

event. To calculate distance3, we find the distance between	n_` for every note in the score event 

and then find the minimum distance.  In other words, the distance(i, j) is defined as 

distance(i, j) = αddd`b + αede`b + α_d_ 
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where dd`b  is the octave distance between n_`  and nab . Note that we consider the difference 

between octaves regardless of whether the pitch classes match, and also two pitches that differ by 
a half step could be treated as in different octaves, so this is a simple measure of whether there are 

performed notes in the vicinity of the score notes.  The octave distance dd`b is computed as 

dd` = fg
n_`
12h − j

nab
12kf 

where de`b  is the chroma distance between n_`  and nab . The chroma value changes periodically 

from 0 to 11 as the MIDI number increases, which can be understood as travelling along a circle 
with a perimeter of 12. The distance between the two chroma values is defined as the closest length 
between two chroma values in the circle. For example, the distance between 1 and 11(chroma 
value) is 2 instead of 10.  

de`b = flmn_`no8M
− plnaboq

8M
f , 	12 − 	 flmn_`no8M

− plnaboq
8M
f 

lmn_`no8M
represent n_` modulo 12.    

The variable d_: shows whether the predominantly-detected note matches the top note in the score. 

If the answer is yes, d_ = 0, otherwise d_ = 1. 

d_ = (max(𝐧𝐬) ≅ 	n8) 

The reason we use dd`  and de`  instead of directly calculating the difference between the pitch 

values of the performance event and a score event is that we want to decrease the influence of 
octave errors. For example, consider an octave error when the performance event is 72 (on the 
MIDI scale).  In this case we might have two score event candidates, one being the true score event 

60, and one being 70.  dd` + de` equals 1 when the score event is 60, and it equals 2 when the score 

event is 70. The score event which is an octave lower than the performance event, which appears 
to be the better choice.  
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The variables αd , αe , α_  are weight parameters for dd` , de` , d_  respectively, which would be 

further tuned and show an effect on performance.  They reflect how much impact each distance 
gives on the score following the performance. 

Currently, the values of αd, αe, α_ that provide the best performance are αd = 0.17, αe = 0.11, 

α_ = 0.72. 

 

4.2 The Probabilistic Linear Combination Method (PLC) 

In Section 4.1 we discussed a linear combination method which takes the properties of errors that 
Harmonic Product Spectrum algorithm makes into consideration. It does improve the performance 
a lot. But there are some problems in the design of the rating function which cannot be neglected. 
First, the rating is not a very meaningful number. It can only roughly reflect relatively how close 
one score event is to the performance event when compared to one other score event. If the number 
of compound score events candidates is large, it would introduce many errors. Second, every time 
a new performance event comes in, the local maximum rating among score event has to be found 
in order to update the best-match rating matrix. This approach is computationally inefficient and 
may lead to inaccurate matching updates. Third, the design of the rating function is ad hoc, it is 
hard to prove that a linear combination is a good choice for utilizing useful pitch detection 
information from standard pitch detector.   
 
4.2.1 Motivation 

The linear combination method is compatible with Huang’s score-following system. In Huang’s 

system [13], the dynamic programming (DP) technique is applied, and the optimal score-alignment 

path always corresponds to the path which has the maximum sum of ratings along a path. Similarly, 
DP solves the minimum cost path problem by finding the minimum sum of costs along a path. If 
we replace the cost with log(cost), then it can be viewed as finding minimum product of cost.  

min l4log(cost)o = min llog lucostoo 

This can be also viewed as min	(∏ cost).  
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Figure 7 shows an example of a score-alignment path, where rows represent the performance and 

columns represent the score. In the figure, we use 𝑝: to represent compound performance event i 

and use 𝑠x to represent compound score event j. For a compound performance event 𝑝:, we use 

𝑠y>@F(:) to represent the matching compound score event. Similarly, we use 𝑠y>@F(:z8) to represent 

the matching compound score event for 𝑝:z8. 

 

Figure 7. An example of a score alignment path 

The objective of the process is to find a path which maximizes 

𝑃(𝑘) =u𝑃(𝑝:|𝑠y>@F(:))𝑃(𝑝𝑎𝑡ℎ(𝑖)|𝑝𝑎𝑡ℎ(𝑖 − 1))
�

:78

 

k refers to k	th compound performance event, which could also be understood as the most current 

compound performance event.  

If we compute the log of 𝑃(𝑘), we obtain 

log 𝑃(𝑘) =4log	(𝑃(𝑝:|𝑠y>@F(:)))
�

:78

+ log	(𝑃(𝑝𝑎𝑡ℎ(𝑖)|𝑝𝑎𝑡ℎ(𝑖 − 1))) 
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𝑃(𝑝𝑎𝑡ℎ(𝑖)|𝑝𝑎𝑡ℎ(𝑖 − 1)) can be understood as the probability of skipping from compound score 

event 𝑠y>@F(:z8) to compound score event 𝑠y>@F(:). Large skip would cause a low probability. To 

optimize the score matching path, we want to maximize ∑ log	(𝑃(𝑝:|𝑠y>@F(:)))�
:78  which equals to 

minimize ∑ −log l𝑃m𝑝:�𝑠y>@F(:)no�
:78 . This optimization problem is the same as the problem of 

finding the path with minimum cost. We can define  −log l𝑃m𝑝:�𝑠y>@F(:)no as the cost and find the 

minimum-cost path using dynamic programming techniques. 

 

4.2.2 Details of the Method 

In order to find the optimal path, Pmp3�s_�12(3)n  needs to be estimated. One way to estimate 

Pmp3�s_�12(3)n	is to calculate the distance between p3 and s_�12(3) and estimate the probability based 

on the distance. We call the estimated probability P ldistancemp3, s_�12(3)no . The distance is 

obtained using distance function designed in linear combination method.  

We collected the distances to the correct match for all audio frames in the dataset, and made a 
histogram of these distances. Then we converted the histogram with a y-axis that represented 
counts to a histogram with a y-axis that represented probability. 
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Figure 8. Probability distribution of the distance values 

We define the cost using the dynamic time warping algorithm as  

cost = 	−log	(𝑝(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)	) 

 

4.3 The Absolute Probabilistic Model of Pitch Errors (APPE) 

We define p(na|n_) as the probability that a compound score event na is a correct match given a 

compound performance event n_ . Then the path with the maximum product of probabilities 

p(na|n_) is the path that has the best audio-to-score alignment. In a system which tries to find the 

lowest cost path, in order to maximize product of probabilities, we use −log	(p(na|n_)) as the 

cost. Hence, we can solve the best path problem by minimizing the sum of −log	(p(na|n_)) along 

a path. 

To better calculate the probability we want, we compile a matrix which reflects the relation 
between a ground truth note and the detected notes that correspond to it.  (For example, the ground 
truth note middle C, which is 60 in the MIDI scale, might be detected as 60, 72, 61, etc. The matrix 
can tell how likely these detection results would appear knowing that 60 is the ground truth note.)  
Both the detected and ground truth notes range from 0 to more than 100 on the MIDI scale.   

The information of ground truth pitch values of audio recordings in the Bach 10 dataset is 
employed to build this matrix. For each ground truth pitch value, we gathered all detection results 
corresponding to it, and count how many times each detected pitch value happens. In the matrix, 
each row represents a ground truth pitch value, and each column represents a detected pitch value. 
By normalizing each column, we obtain the conditional probability of how likely a pitch value is 
the ground truth pitch value given a detected pitch value. 

One question that is important for building these matrices is that of how to find the corresponding 
pitch value in a compound score event given a detected pitch value in a compound performance 
event. For example, octave errors, especially those in which the true pitch value is detected one 
octave higher, often happen. We take this error property into account.  
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For a detected pitch in a frame, we compare the ground truth pitches in this frame and compare 
the detected pitches with them. If one of them correctly matches with the detected pitch, then we 
take the matched ground truth pitch value as the true pitch value. If none of them correctly match 
with the detected pitch, then we deduct an octave from the detected pitches and compare it with 
the ground truth notes again. If one of them matches with the detected pitch, we take that ground 
truth pitch value to be the true pitch value. If none of them match, then we take the closest pitch 
value of the ground truth pitch values to be the true value. 

As mentioned in Section 3, the accuracies of first, second, third, and last detected notes are 
different, with the first detected note being more reliable than others. Matrices of detected pitch 
vs. ground truth pitch are built for the first, second, third, and last detected note separately.  Plots 
of these matrices are shown as below. Bright dots represent high probability while dark dots 
represent lower probability. 
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Figure 9. Matching probability matrices for the first, second, third, and fourth detected 
notes 

Apart from the four matrices above, we also build matrices for soprano, alto, tenor and bass. Plots 
of matrices are shown as below. 

 

Figure 10. Matching probability matrices the for soprano, alto, tenor and bass parts 

From the eight figures above, it is easy to observe that octave errors occur frequently, especially 
in the cases of the second, third, fourth, and soprano and alto notes. But for the first detected note, 
and the tenor and bass notes, bright dots are clearer as a single line. Based on this observation, we 
use these three matrices for the matching function in our score-following programs.  

As is mentioned in Section 4.1, we use 𝐧𝐬  to represent the compound score event, and 𝐧𝐩  to 

represent the current compound performance event. Both of these are vectors containing several 
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notes on the MIDI scale. The variable n_`	represents the i12 detected note in a performance event 

𝐧𝐩,where i ranges from 1 to N,  N is the number of notes in the  current performance event. The 

variable	nab represents the j12 note in score event, where j ranges from 1 to M, with M being the 

number of notes in score event. 

When comparing a compound performance event 𝐧𝐩 with a compound score event 𝐧𝐬, we first 

take first detected note n_�, tenor n_�, bass n_� from the performance event, and find the most 

probable matching pitch in a score event for each of them. Based on information from the three 
matrices respectively, probabilities can be obtained for each detected pitch. The final probability 

is obtained by multiplying them together. Using 𝑃8 to represent the probability matrix of the first 

detected note,  𝑃@ to represent the probability matrix of the tenor note, and  𝑃� to represent the 

probability matrix of the bass note, for a detected pitch n_�, we define its most likely corresponding 

true pitch value in 𝐧𝐬 to be S(n_�). 

𝑝mS(n_�)|n_�n = max
:
𝑝mna�|n_�n 	= max

:
𝑃8mn_�, na�n,         i = 1: length(𝐧a) 

𝑝m	S(n_�)|n_�n = max
:
𝑝mna�|n_�n 	= max

:
𝑃@mn_�, na�n,         i = 1: length(𝐧a) 

𝑝mS(n_�)|n_�n = max
:
𝑝mna�|n_�n = max

:
𝑃�mn_�, na�n,         i = 1: length(𝐧a) 

The calculation of probability is:  

p(𝐧𝐬|𝐧𝐩) = 𝑝mS(n_�)|n_�n ∙ 𝑝mS(n_�)|n_�n ∙ 𝑝mS(n_�)|n_�n 

With this probability, we define the cost in the dynamic time warping algorithm as 

cost = 	−log	(p(𝐧𝐬|𝐧𝐩)) 

 

4.4 Relative Probabilistic Model of Pitch Errors (RPPE) 

For each detected pitch value n_`, we define the true pitch value that it corresponds to as T(n_`). 

We define the difference between them as  
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d_` = 	n_` − T(n_`) 

By using the same information from the Bach 10 dataset in the same way as in Section 4.3, we 

collected the difference d_` for each pair of (detected pitch value, true pitch value) and made a 

distribution for each type of detected note. 

As in Section 4.3, we build distributions for the first, second, third, and last detected pitch as well 

as the soprano, alto, tenor, and bass notes in the score. We plot the distributions of  p(d)for each 

of these types of detected pitch below. 
 

 
Figure 11.  p(d) for the first, second, third, and fourth detected pitch 
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Figure 12. p�(d) for notes in the soprano, alto, tenor and bass parts 

As was seen in Section 4.3, the distributions for the first-detected pitch, and the tenor and bass 
lines were cleaner than the other distributions. so we make use of these three statistics to estimate 

pm𝒏�|𝒏yn. 

pm𝒏�|𝒏yn = p8(d8) ∙ p@(d@) ∙ p�(d�) 

where d8 ,	d@,  d� represent the difference between the hypothesized pitch values and the ground-

truth pitch value for the first detected pitch, tenor, and bass, respectively.  

Using the probability pm𝒏�|𝒏yn, we define the cost in the dynamic time warping algorithm as 

cost = 	−log	(pm𝒏�|𝒏yn) 
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5 Evaluation Results 

This section includes descriptions of the dataset, evaluation method and results. Experiments using 
each matching-criterion design are performed. 10 ensemble music pieces are tested through score-
following systems with different types of matching criteria. Score following results are collected 
for evaluation. Comparisons are mainly made for the probabilistic matching-criteria (Sections 4.2-
4.4) from different perspectives.   

 

5.1 The Bach 10 dataset 

As introduced in 3.2, the Bach 10 dataset consists of excerpts from ten four-part J.S. Bach chorales 
[12]. In the folder for each piece, except from ensemble audios, MIDI scores, the ground-truth 
alignment between the audio and the score, the ground-truth pitch values of each part and the 
ground-truth notes of each piece are also provided. When evaluating performance, the MIDI scores, 
ensemble audios, and ground-truth alignment between the audio and the score are employed.  

 

5.2 Evaluation methods 

The score-following performance will be evaluated using the evaluation metrics from the MIREX 
Score-following task [11] based on the Bach 10 dataset [12]. The evaluation parameters are as 
follows: 

1. Precision: the proportion of correctly aligned notes in the score, which ranges from 0 to 1. A note 
is said to be correctly aligned if its onset does not deviate by more than a threshold (or tolerance 
window) from the reference alignment.  

2. Mean error: the mean difference between the performed note-onset time and the estimated note-
onset time for non-misaligned notes, which is an overall measure of the latency of the system. 
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3. Mean absolute error: the mean absolute difference between the estimated note-onset time and the 
performed note-onset time for non-misaligned events. 

4. Standard deviation of error: the standard deviation of error for non-misaligned events and shows 
the imprecision or spread of the alignment error. 

5. Missed rate: the percentage of scored notes that are not reported by the score follower 

5.3 Score-following Systems 

This subsection introduces two score-following systems that are employed to evaluate the 
matching criteria. We use a modified version of the score follower in Huang’s system to evaluate 
the improvement of the results between baseline experiment and linear combination method. Due 
to limitations in the range of the cost function in Huang’s system, we built a standard dynamic 
time warping score follower to evaluate the performance of 4 matching criteria described in section 
4. 
 
5.3.1 Modified Dynamic Programming Score Follower in Huang’s System [13] (MDP) 

This score-following algorithm is a modified version of the score-following algorithm described 
in Huang’s masters thesis [13]. We mainly modified the way of updating the best-match matrix. 
For each performance event, instead of increasing the number in the matrix by 1 when a match is 
found, we calculate ratings of each score events, report the locations of maximum ratings, and 
update the number in that location by adding the rating. The rating reflects the similarity between 
the current performance event and the score event being considered, with larger ratings 
representing greater similarity. The rating should range from 0 to 1 in order to work well with 
Huang’s score-following algorithm. 
 
5.3.2 A standard dynamic time warping algorithm (SDTW) 

Huang’s system is designed for input from a MIDI keyboard, which implies perfect pitch 
identification. It doesn’t work well with acoustic instruments. Although the MDP system is 
modified to be compatible with acoustic-based instruments, the idea is a bit ad hoc and it has a 
number of limitations. The remedy MDP uses to solve the ‘jump ahead’ problem is setting a 
constant penalty for each compound score events according to their order. The higher the order, 
the greater the penalty. Since the amount of penalty is initialized beforehand and is not sensitive 
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to the distribution of ratings, the system sometimes has difficulty recovering from incorrect 
tracking. Besides, it is possible to miss the optimal path if we only update the number in the 
locations of maximum ratings and focus on one possible path. For these reasons we built a score 
follower based on the standard dynamic time warping (DTW) algorithm in Rabiner and Juang [14] 

that tries to minimize the sum of −log	(p). An upper bound of 10 is set for −log	(p) which means 

that any probability that is lower than e^(-10) = 0.000045 is considered as same as e^(-10).  Four 

paths are retained in each update. The local constraints are 𝒫8 → (1,0), 𝒫M → (1,1), 𝒫O → (1,2), 

𝒫R → (1,3). 

 

Figure 13. Local constraints in the DTW algorithm 

Slope weighting for each paths are defined as 𝑤8 = 0.18 , 𝑤M = 0.17 , 𝑤O = 0.25 , 𝑤R = 0.4 .  

These weightings are multiplied by the score associated with the corresponding path segment, and 
they have the purpose of favoring hypothesis segments with smaller time warpings (i.e. slopes 
closer to 1). 
 

5.4 Results for Baseline Experiments  

In order to evaluate how much the performance of the score follower is improved with a matching 
criterion that takes into account the detector’s properties, we conducted experiments on the 
baseline data and using the linear combination method using the two score followers described in 
Section 5.3.  
 
5.4.1 Baseline Experiments 

In order to evaluate how much the performance of score follower get improved with a matching 
criterion considering detector’s properties, we conducted several baseline experiments using two 
score followers described in section 5.3. 



Page 33 of 45 

The distance function of compound score events and compound performance events in baseline 
experiments is the same as the distance function in linear combination method. The only difference 
is that the distance function in the baseline experiment does not take into consideration octave 
errors or the significant relation between the predominant detected pitch value and the top-note 
pitch value. 

The difference between baseline and linear combination method appears in the design of 

distance(i, j) function. The function that calculates the distance between the i12 detected note n_` 

in the current compound performance event and the j12 note nab in the compound score event is 

distance(i, j) = αddd`b + αede`b 

where dd`b  represents the octave distance between n_`  and nab , and de`b  represents the chroma 

distance between n_`  and nab . In baseline experiments, we set αd = 12  and  αe = 1 , so 

distance(i, j) becomes simply the difference between n_`  and nab  with no consideration paid to 

octave errors. αd and αe are then normalized. 

In these experiments, we applied the matching criterion design using two score followers, MDP 
and SDTW. The experimental results are obtained and shown as below.  

 

Music Piece # 1 2 3 4 5 6 7 8 9 10 Ave. 

Precision 0.20 0.25 0.1 0.08 0.05 0.03 0.38 0.4 0.32 0.25 0.21 

Missed Rate 
(%) 

73 73 73 71 89 86 28 13 61 73 71.4 

Table 1. Baseline results using the MDP score follower 
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Music Piece # 1 2 3 4 5 6 7 8 9 10 Ave. 

Precision 0.23 0.19 0.44 0.35 0.21 0.14 0.58 0.48 0.23 0.24 0.31 

Missed Rate 
(%) 

37 29 13 10 16 20 0 31 16 19 18 

Table 2. Baseline results using the STDW score follower 

From these results, it is clear that both score-following systems provide low precision. Both 
systems nearly fail to follow the score. The STDW score follower produces a lower missed rate 
than the MDP score follower.  

 

5.4.2 Experiments using the Linear Combination Method 

A baseline experiment is described in Section 5.4.1. In order to figure out whether special 
consideration on properties of pitch detector can help with improving the performance we 
performed an experiment with the same score followers using the linear combination (LC) method.  

 

Music Piece # 1 2 3 4 5 6 7 8 9 10 Ave. 

Precision 0.89 0.93 0.92 0.84 0.88 0.92 0.79 0.88 0.89 0.87 0.88 

Mean Error 
(ms) 

-4 -29 -7 2 -8 -5 -20 -5 -42 -29 -15 

Mean Abs 
Error 

54 53 74 63 64 53 64 39 92 57 61 

STD of Errors 80 68 100 90 89 75 89 60 111 81 84 

Missed Rate 
(%) 

7 3 2 7 3 1 12 2 8 10 5.5 
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Table 3. Evaluation results of the LC method with the MDP score follower 

 

Music Piece # 1 2 3 4 5 6 7 8 9 10 Ave. 

Precision 0.91 0.89 0.94 0.67 0.97 0.74 0.86 0.83 0.98 0.99 0.88 

Mean Error 
(ms) 

-43 -84 -19 -63 -26 -96 -3 33 -31 -34 -36 

Mean Abs 
Error 

49 95 31 70 53 116 43 56 57 49 62 

STD of Errors 52 79 37 74 70 95 65 71 75 57 68 

Missed Rate 
(%) 

0 0 0 0 0 0 0 0 0 0 0 

Table 4. Evaluation results of the LC method using the STDW score follower 

 

5.4.3 Comparison on Baseline Method and LC Method 

Averages of evaluation results for these experiments are summarized in Table 5.    
 

Score Follower MDP score follower STDW score follower 

Method Baseline 
Method 

LC Method Baseline 
Method 

LC Method 

Precision (%) 21 88 31 88 

Missed Rate 
(%) 

74 5.5 18 0 

Table 5. Comparison of the Baseline Method and the LC Method 
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Comparing these results to those of the baseline experiment, it can be seen that the LC method 
provides a substantial improvement in performance. The precision is improved to 88% in both 
score-following systems. This result is encouraging compared to the baseline matching criterion. 
The missed rate is also greatly improved using both score-following systems, although the SDTW 
score follower exhibits better precision variance and missed rate compared to the MDP score 
follower. These results indicate that incorporating the properties of HPS into the design of the 
matching criterion is quite helpful with improving score-following accuracy.  

 

5.5 Comparisons of the Different Matching Criteria 

Because of the limitations in working with the MDP score follower, we use the STDW score 
follower exclusively to evaluate all matching criteria and make comparisons among the four 
probabilistic matching criteria. Comparisons are made using the evaluation methods described in 
Section 5.2. 
 
5.5.1 Precision comparison 

As described in Section 5.2, precision is defined as the proportion of correctly aligned notes in the 
score, and a note is said to be correctly aligned if its onset does not deviate by more than a threshold. 
Threshold in this thesis is set to 250ms, which is identical to a similar study in [8].  Comparisons 
of precision results for the four proposed probabilistic matching criteria are presented in Table 6. 

 

 1 2 3 4 5 6 7 8 9 10 Ave. 

LC 0.91 0.89 0.94 0.67 0.97 0.74 0.86 0.83 0.98 0.99 0.88 

PLC 0.81 0.49 0.76 0.56 0.95 0.67 0.69 0.21 0.82 0.92 0.69 

APPE 0.91 0.95 0.90 0.94 0.92 0.90 0.95 0.90 0.83 0.95 0.92 

RPPE 0.93 0.90 0.86 0.60 0.92 0.90 0.86 0.95 0.80 0.92 0.86 
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Table 6. Comparisons of precision for the different matching criteria design 

In comparing the average results, we make several observations: 

1. The APPE method achieves the best performance. Only the ninth music piece has a precision that 
is lower than 90%.  

2. Precision results using the RPPE method are worse than those obtained using the APPE method, 
suggesting that the distributions of differences between hypothesis pitch value and true pitch value 
are sensitive to the true pitch value. That means for some true pitch values, the HPS algorithm may 
have a better chance to detect correctly.  

3. The LC method performs much better than PLC method. This result indicates the existence of some 
cases that when using LC method, the correct match has the highest score, but when we turn the 
score into probabilities, the score is no longer highest. Two possible reasons are listed:  
a. The probability of distance is obtained from a limited dataset. Some small distance which 

apparently corresponds to better match has lower probability;  
b. The definition of distance is imperfect. It is not guaranteed that the smaller distance always 

corresponds to better matches.  

 

5.5.2 Mean Error Comparison 

Onset time errors represent the difference between the ground-truth note-onset time and estimated 
note-onset time for each performance event. Several evaluation parameters are used for evaluating 
onset time errors: mean error, mean absolute error, standard deviation of error, and the missed rate.  

Mean error is the mean difference between the estimated note-onset time and the performed note-
onset time for non-misaligned notes. This evaluation parameter reveals the overall latency of the 
system.  

Comparisons of mean error results of the proposed probabilistic matching criteria are presented in 
Table 7. 

 

Music Piece # 1 2 3 4 5 6 7 8 9 10 Ave. 



Page 38 of 45 

LC -43 -84 -19 -63 -26 -96 -3 33 -31 -34 -36 

PLC -26 -69 5 -85 42 -72 16 86 -9 -42 -15 

APPE -25 -70 -18 -33 -11 -32 10 16 -32 -26 -22 

RPPE -27 -74 -17 -41 -19 -36 -5 20 -32 -18 -24 

Table 7. Comparisons of mean errors in ms for the various matching criteria 

Negative mean errors indicate that the estimated note-onset time is behind the performed note 
onset time. In both Table 7, all the average mean errors are negative, that means these score-
following systems have some latency on reporting followed score locations. We also found that 
the score-following system with PLC and APPE methods produce less latency compared to other 
probabilistic matching criteria designs. But since only non-misaligned notes are taken into account, 
the higher the precision is, the more valuable the mean error information is. Based on both 
precision and mean error, APPE is better. 

 

5.5.3 Mean Absolute Error 

Mean absolute error is the mean absolute difference between the estimated note-onset time and the 
performed note-onset time for non-misaligned events. If the matching criterion is designed to be 
sensitive to the change of performance event, the mean absolute error would be small.  

Comparison on mean absolute error results of proposed probabilistic matching criteria are 
presented in Table 8. 

 

Music Piece # 1 2 3 4 5 6 7 8 9 10 Ave. 

LC 49 95 31 70 53 116 43 56 57 49 62 

PLC 46 93 38 99 93 106.4 52 86 53 66 73 
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APPE 28 73 31 41 44 53 25 33 57 42 43 

RPPE 31 79 21 56 41 71 36 39 57 34 47 

Table 8. Comparisons of mean absolute error for the various matching criteria 

From Table 8, it is easy to see that APPE method produces less mean absolute error than other 
methods. Commonly, during the transition from one compound performance events to another, the 
pitch detector would make some transition errors because the time frame contains a mix of residual 
from previous events and newly performed events. APPE method is more sensitive to the change 
of input time frame.    

 

5.5.4 Standard Deviation of Error 

The standard deviation of errors is the standard deviation of error for non-misaligned events and 
shows the imprecision or spread of the alignment error. 

Comparison of the standard deviations of errors of the proposed probabilistic matching criteria are 
presented in Table 9. 

 

Music Piece # 1 2 3 4 5 6 7 8 9 10 Ave. 

LC 52 79 37 74 70 95 65 71 75 57 68 

PLC 61 93 48 88 110 104 71 79 70 79 80 

APPE 27 57 37 42 61 66 30 50 74 54 50 

RPPE 33 65 31 67 56 87 56 56 77 42 57 

Table 9. Comparisons of the standard deviation of errors (in ms) for the various matching criteria 

From these results, it can be seen that the APPE method has the smallest error standard deviation.  
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5.5.5 Missed Rate 

Missed rate is the percentage of scored notes that are not reported by the score follower.  

 

Music Piece # 1 2 3 4 5 6 7 8 9 10 Ave. 

PLC 0 0.0625 0 0 0 0 0 0 0 0 0.0063 

Table 10. Missed rates for the PLC criterion. (The other criteria produced 
 no misses.) 

The miss Rate using the PLC method is 0.63%, which is close to zero. The miss rates of all other 
methods missed rates are identically zero, which means that all scored notes are reported.  

 

5.5.6 Summary 

When we compare mean error/ mean absolute error/ standard deviation of errors, one thing that 
cannot be neglected is they all refer to non-misaligned events. And non-misaligned events are 
events whose onset time error is less than 250 ms. So even if two matching criteria produce the 
same mean absolute error, we would consider the matching criterion that produces greater 
precision to be better.  

From the evaluation results of different matching criteria designs, it is easy to find that APPE 
method has the least mean/ mean absolute error and has the least standard deviations of errors. The 
precision for this matching criteria is also the highest.  

The overall performance of linear combination method is much better than the overall performance 
of probabilistic linear combination method. In Figure 8, as the distance increases, the probability 
of distance doesn’t always decrease. One possible reason is that the dataset we use to build the 
histogram of probabilities is relatively small. Suppose we have a compound performance events 
A and two compound score events candidates B, C, and the distance of the first pair A and B is 5, 
while the distance of the second pair B and C is 8. If we use the linear combination (LC) method, 
pair AB has more chance to be the matching pair. But when we use the probabilistic linear 
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combination method, pair BC is more likely to be the matching pair.  It should be remembered, 
though that the APPE and RPPE criteria provide better performance than either the LC or PLC 
criteria. 
 
 
 
 
 
 
 
 
 

6 Conclusions 

This section contains a summary of the achievements of this thesis and suggestions for future work. 
 

6.1 Summary of this thesis 

This thesis used the harmonic product spectrum (HPS) as means to explore the feasibility of 
applying standard pitch detectors in score-following task for polyphonic music.  

In order to identify the information that could be utilized to enable good score-follower 
performance, several pilot experiments on two standard pitch detectors are performed, we 
examined the accuracy of the harmonic sieve and harmonic product spectrum (HPS) algorithms 
with polyphonic acoustical input.  Since the overall accuracy of the HPS algorithm was found to 
be greater than that of the harmonic sieve method, we used the HPS algorithm in our further 
investigations. In pilot experiments using the HPS algorithm, we found that octave errors are 
common and that the predominant detected pitch has a significant relation with the highest ground-
truth note. Also, the predominant detected pitch is identified with much greater accuracy than less 
predominant detected pitches.  These observations give us some insight into how to design better 
matching criteria for score-following systems. We designed several matching criteria based on 
these insights.  

The first matching criterion we developed is called the linear combination (LC) method. In this 
method, we designed a distance function which calculates the distance between compound score 
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events and compound performance events. This distance function takes octave errors and the 
property of predominant detected pitch into consideration. We observed a great improvement in 
the performance of the LC method compared to a similar baseline matching criterion design that 
does not take into account the properties of the detector.  This design shows the feasibility of 
applying HPS algorithm into score-following system.  

Although the linear combination method achieves substantially better performance, it has some 
shortcomings. The distance function only reflects the relative difference between the score and 
performance events, and the linear combination function is not guaranteed to be the best way of 
representing distance. To address those issues, we designed several probability-based matching 
criteria the PLC, APPE, RPPE methods.  

The performance of the LC, PLC, APPE, and RPPE matching functions are compared in Table 11. 

 

 Precision Mean Error 
(ms) 

Mean Absolute 
Error (ms) 

Standard 
Deviation Errors 
(ms) 

Missed 
Rate 

LC 0.88 -36 62 68 0% 

PLC 0.69 -15 73 80 0.63% 

APPE 0.92 -22 43 50 0% 

RPPE 0.86 -24 47 57 0% 

Table 11. Comparison of the performance of different matching criteria  

From the evaluation results for different matching criteria designs, we note that APPE method has 
the least mean error and mean absolute error, and has the least error standard deviations. The 
precision for the APPE matching criterion is 92%, which is also the highest.  

Comparing the APPE method with the RPPE method, we observe that the APPE method provides 
better performance. This suggests that the distributions of differences between the hypothesized 
pitch value and the true pitch value is sensitive to the true pitch value. 
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6.2 Suggestions for Future Work 

The evaluations we performed using different methods were based on the relatively small Bach 10 
dataset, in which the musical works are all performed with perfect accuracy. More evaluations 
could be performed on music with changes in tempo. Also, in real performances, the performer 
may make mistakes. The robustness of matching criteria could be evaluated on some music pieces 
with mistakes.  Finally, while the APPE and RPPE methods were developed with as few ad hoc 
assumptions as possible, it is not clear how well the distributions of errors generalize to other 
music, and especially music that is not written in strict four-part harmony.  Ultimately, a more 
general solution to the polyphonic score-tracking problem that is sensitive to pitch estimation 
errors would need to develop completely automatic means that can learn the nature of the errors 
and use this knowledge to construct an optimal score-matching function that is sensitive to what 
is learned.  
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